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This paper describes a method for manufacturing complex three-dimensional curved

structures by self-folding layered materials. Our main focus is to first show that the
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1 Introduction

We are interested in developing rapid manufacturing of com-
plex structures. To this end, we combine parameterized designs
on origami pattern with planar fabrication into a new process for
creating complex three-dimensional shapes with curved surfaces
by self-folding. In this paper, we apply this fabrication method to
manufacturing several types of propellers. We show experimen-
tally that the propellers are functional units. While the results in
this paper focus on propellers, they can be generalized to other
complex shapes.

A rapidly increasing demand for manufacturing complex, itera-
tive, or fine structures has drawn attention toward a fabrication
technique that combines planar fabrication and origami-inspired
transformations [1-3]. Recent innovations in origami technique
[4,5] have demonstrated that curved crease folding enables the
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material can cope with curved crease self-folding and then to utilize the curvature to
predict the folding angles. The self-folding process employs uniform heat to induce self-
folding of the material and shows the successful generation of several types of propellers
as a proof of concept. We further show the resulting device is functional by demonstrating
its levitation in the presence of a magnetic field applied remotely.

[DOI: 10.1115/1.4029548]

generation of three-dimensional geometries unachievable in
traditional prismatic paper folding [4], which uses straight creases
alone.

In the curved folding process, it is well known that folding also
necessitates bending the sheet [4]. Various investigations have
been conducted focusing on curved crease designs [6], rulings
(see Sec. 3 for an explanation of rulings) [7,8], sheet bending [9],
formulation of the folding principle [10-12], or applications
pertaining to car body design [13].

Self-folding is a recent technique aimed at rapid fabrication of
objects by the folding of many small and complex creases
[14-19]. To our knowledge, few approaches have attempted self-
folding curved creases [20]. The engineering challenges here are
(1) to precisely predict the folding angle of a curved crease, (2) to
achieve self-folding of curved creases into a functional structure,
and (3) to actuate the device after it has been self-folded, as a way
of demonstrating functionality.

Under these presented challenges and goals, this paper contributes
the following:
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(1) simulations for estimating curved crease folding angles

(2) an application of this method toward designing propellers

(3) an algorithm for computing self-folding crease patterns for
objects with curved surfaces, such as propellers

(4) aseries of self-folding experiments for different propellers

(5) levitation experiments of the self-folded propellers by
remotely applying a rotational magnetic field.

2 Outline

The methodology of curved crease self-folding described in this
paper consists of the following steps. We model and derive a
method for predicting a folding angle of a curved crease (Sec. 3).
We outline the general guidelines for making an origami propeller
(Sec. 4.1). We analyze the geometric relationship between the
crease and folded propeller structure (Sec. 4.2). We develop an
algorithm for automatically designing various types of origami
propellers (Sec. 4.3). We build an electromagnetic coil system
with supporting electronics for remote actuation of the propeller
(Appendix). We show the experimental results of self-folding
curved creases (Sec. 5.1) and demonstrate self-folding of propel-
lers with different crease curvatures (Sec. 5.2). We investigate
the functionality of the folded propeller (Sec. 5.2). We conclude
the study (Sec. 6).

3 Curved Crease Folding

This section investigates a basic theory of curved crease fold-
ing. We numerically analyze the relationship between shapes of
various curvatures drawn on a two-dimensional crease pattern and
the resulting three-dimensional folded shapes and curvature. Here,
we employ the superellipse as an example of general curvature.

3.1 The Model. The curves we investigate are superellipses
described on an x-y plane centered at x = n/2 with radius
K=m/2

n

=1 1)

‘X—K

n
+]2
K

K

The superellipse has a unique characteristic such that, by
changing a single parameter, 7, it can represent a sector of major
shapes; it changes curvature continuously from a square (n — 00)
to a circle (n=2), to a triangle (n=1), and to a “star” (n < 1),
while maintaining the width and the height (see Fig. 1(a)). This is
an ideal characteristic for our study, since various curvatures can
be compared in a single parametric space.

The positive half of the superellipse equation is

y:K~(lf’X_K
K

n> 1/n o

We depict the curves of n=1.5, n=2, and n=4 in Fig. 1(a)
and show the illustration of the folded plane in Fig. 1(b) with an
example in the side picture.

The folding angle « is the angle between the two sides of the
curve after it is folded, and whose change with respect to x can be
described as [11]

B _@G0) ) ot ) cothe) )

ds
where s is the arc length of the curve, which is a function of x

s(x) = L I+ (d—y>2ax 4

dx
K>p is the curvature of the flat curve defined as
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Fig. 1 Curved crease folding. (a) Superellipse curves of
n=1.5, n=2, and n=4. The rulings and corresponding f are
defined. (b) The folding angle « over arc lengths s.
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dx?

(1e@))

and f (-€ [R, L)) is defined as the angle between the tangent line
to the curve and the rulings of the surface that are made from the
fold (Fig. 1()).

Taking the derivative and reciprocal in Eq. (4) yields

Kop = (©)

a_1_ 1
dsistﬁi L dy\ 2
. dx

Rulings (or ruling lines) are straight lines that define a space
curve by sweeping along the surface (shown as the dotted lines in
Figs. 1(b) and 8(b)). Hypothesizing that both surfaces formed by
the crease form cylindrical curvatures when folded into three
dimension, f§ are calculated using vertical rulings (Fig. 1(a)).

With vertical rulings, the angle fiz can be computed as

(6)

|

_ -1
ﬁR = tan Q (7)
dx
and f5; is simply
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The derivative of the superellipse equation is

dy x—«] |x—x|"!
AP . 9
dx Bgn{ y } y ©
From Eq. (9), we obtain the second derivative of y as
& —x|"? (= dy 1
Ty _ - = Atk dy 1
dx? y y? dx 'y
n—1
B B (x K) (10)
y y

where 0 is the Dirac delta function.

3.2 Simulation Results. Figure 2 shows the simulation
results of Eq. (3) for different surface conditions, which were run
for n values of 1.5, 2, and 4. As the stiffness of the sheet material
affects the bendable curvature of the surface and thus affects o, to
run the simulation, we chose o at the end of the creases (oc|dy Jdv=1}
termed o,,q) by supposing that the entire crease consists of two
straight lines divided from the middle of the curve to the edges
(an example shown as the green line in Fig. 1(a)). This way, when
the surface is fully folded flat, o ,g =" — y (I" and y were obtained
by taking the inverse tangent of the ratio of the horizontal and ver-
tical radii of the curve), and when the surface folds up to /2,
%eng = (I' — y + m)/2, premising that the actual value falls between
them. This condition was selected by referring to our pretested
manual folding experiments and the self-folding experiments
appearing in Sec. 5.

The simulated result showed that the crease for n =4 folded the
most acutely while that for n=1.5 folded the least in the middle
of the creases (called o,;qq1) This trend is more clearly displayed
in Fig. 3 with the change of folding angle ;441 With respect to 7.
The crease folded more as n increased, irrespective of eng,
although the tendency was more apparent for smaller values of
Oeng- This result suggests that when we plan to induce a difference
in folding angles in real fabrication, it would be better to aim for
smaller folding angles in order to achieve clear differentiation in
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Fig. 2 Simulated folding angles «, for n=1.5, 2, and 4, with
different conditions of «.,q. Experimental results of oe,g and
Amiddle are superimposed.
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Fig. 3 Change of apigaie OVer n for aeng =(I' = y + n)/2 (upper
curve) and aeng =1 — y (lower curve). As a general trend, the
larger n becomes, the more acutely it folds.

their folding angles over different curved creases. We also verify
this trend in later experiments (see Sec. 5.1).

Another noticeable trend is that o increased toward the center
of the crease when oey > n/2, while it decreased when
Oend < /2 This trend was observed with other conditions of ¢eng
in the simulation and is confirmed with manually folded models.

See the folding angles from experiments in Sec. 5.1.

4 Origami Propeller

This section builds further upon the established theoretical
implications of curved crease folding to present the actual designs
used in fabricating 3- and 4-blade propellers based on the origami
designs introduced by Mitani [21] and the geometric rationale for
having designed them in this manner. We first show a few largely
well-known design guidelines on propeller design derived from
the theories of aerodynamics. We then analyze the geometric
relationship between a crease pattern and a three-dimensional pro-
peller so that the design parameters such as widths and lengths of
blades can be dynamically optimized and reflected in the creases.

4.1 Design Guidelines. From helicopter aerodynamics, the
thrust force, Fy,, produced by a propeller consisting of multiple
rotor blades is

Fop = C[,()A(uzr2

~ Cpar’r? (11)

where A is the disk area swept by the blades, C, is the aerodynamic

thrust coefficient intrinsic to the blade profile, w is the angular ve-

locity, and r is the length of the blade [22]. The Reynolds number,

Re, for the aerodynamic flow of a rotor in water is
_cor

Re =—
14

12)

where c is the mean chord length of the blade (approximated at 1
cm), o is the angular velocity (approximated at 30 Hz x 2m), and
v is the kinematic viscosity. Agproximating cas 1 cm, w~30 Hz
x2m,r~1cm,and v= 10°m s, being the kinematic viscosity of
water at 20 °C, we obtain a Re ~ 19,000. Given the high Re num-
ber and the fact that each blade of the rotor will be passing in the
aerodynamic wake of the blade ahead of it (in hovering mode) the
flow is expected to be turbulent. Thus, a larger angle of attack of
45 deg for the rotor blades is chosen over the smaller prestall
angles of attack to maximize the lift coefficient curve. Although
increasing drag, this regime features a broader lift coefficient
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Fig. 4 4-blade origami propeller. (a) The crease pattern. (b)
Folded propeller in top view.

maxima thus allowing variability in angles of attack with little
effect on lift.

Furthermore, the following facts on propeller engineering have
been used as general design guidelines:

(1) The lift force is proportional to the square of both angular
velocity and disk radius swept by the blades, r, implying
that scaling down of the disk area needs to be compensated
by a proportional increase in rotational velocity, which
greatly increases required power.

(2) Longer blades provide larger lift forces at the expense of
added weight.

(3) A 45 deg angle of attack is chosen for each rotor blade per
the above discussion in this section.

(4) A spanwise twist along the rotor blade that increases the
angle of attack at the root and decreases it at the tip com-
pensates for the increasing incoming stream velocity along
the blade, thus allowing for a more uniform lift force profile
[23]).

(5) Increasing the number of blades mostly serves the purpose
of reducing vibratory loads, since the power requirement
increases proportionally with blade count.

4.2 Blade Geometry. The crease pattern of the 4-blade pro-
peller is rotationally symmetric and is composed of four straight
and four curved lines, as shown in Fig. 4(a). The center point is O,
and a curved line has two sections: a curved section Of and a
straight section /K. The curve can be one of many different types
of a superellipse sector and does not have to intersect at position /.
In this instance, a circular sector (n = 2) is used for the curve, and
the angle of incidence is set to be Z/KJ45 deg.

Figure 4(b) shows the folded propeller. Each of the corners A,
B, C, D in Fig. 4(a) becomes an end A’,B’,C’, D’ of the blades in
Fig. 4(b), respectively. Each of the points E, F, G, H in Fig. 4(a),
which represents the maximum amplitude of the circular sector
curve, folds to the points E', F',G', H' of the blades in Fig. 4(b),
respectively.

Each point O, I, L in Fig. 4(a) is placed on point O, I’, L’ of the
blades in Fig. 4(b), respectively.

(1) Blade length: Let a denotes the distance between O and I, b
denotes the distance between I and J, and ¢ denotes the
shortest distance between F and OI, where O’ is the center
point and /OJB is 90 deg. In the folded propeller, the point
I’ is under the point O’ at the center. Since /IKJ is 45 deg,
the length of BK is a and the length of JK is b. The length
of each blade is the equal to BJ, which is a + b (apothem).
Blade width: The width of the blade is #+ b because the
distance between E” and center line (I’L’) is t, and the dis-
tance between I’ and B’'K’ is b, where E” is the projected
point of E’ to the bottom (the plane of 'L'B’) and point K’ is
point K in folded status.

2

~
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Fig. 5 3-blade origami propeller. (a) The crease pattern. (b)
Folded propeller in top view.

(3) We look next at the outer circle formed by 'F'G'H’. Since
E'F" of the folded propeller is 2¢, the radius of the outer
circle is 2t/\/§.

The crease pattern of the 3-blade propeller is shown in
Fig. 5(a). The design is similar to Fig. 4(«) in that all of the curva-
ture lines are comprised of both a straight line and a curved line,
and they are pointed symmetrically toward the center O. As with
the 4-blade propeller, each curved line is composed of two parts: a

curved section OG and a straight section GI. The curve can be any
line of the superellipse. We select 30 deg for the angle /GIH.
Figure 5(b) shows the folded 3-blade propeller seen from the
top. Each corner A, B, C in Fig. 5(a) becomes each end A’, B’,C’
of the blades in Fig. 5(b), respectively. Each point D, E, F in
Fig. 5(a) is placed on each of the points D', E', F’ of the blades in
Fig. 5(b), respectively. Each point O, G, J in Fig. 5(a) is placed on
each of the points O’, G’,J’ of the blades in Fig. 5(b), respectively.

(1) Blade length: Let O denotes the center point, and let /OHB
be 90 deg. Let a denotes the distance between O and G, b
denotes the distance between G and H, and ¢ denotes the
shortest distance between E and OG. In the folded propel-
ler, point £’ and the correlating points on the other curved
lines meet at the center. Since /GIH is 30 deg, the length of
BI is v/3a and the length of TH is v/3b. The length of each
blade is the equal to BH and is v/3(a + b).
Blade width: If we project the propeller to the bottom, the
angle between the projected lines of D'E’ and G'O’ is
120 deg. The width of the blade is (l/\/g) + b because the
distance between E’ and the center line is 7/ V/3, and the dis-
tance between J and CH is b.
(3) We look next at the outer circle formed by 'E'F’. Since E'F’
of the folded propeller is 2¢, the radius of the outer circle is

2t//3.

4.3 Autogeneration of a Self-Folding Crease Pattern and
the Sheet. The fabrication of the propeller that was used in the
study followed a protocol established previously by Ref. [16],
used in Ref. [19], and is briefly outlined here. The developed self-
folding sheet has a three layer structure, wherein a heat-sensitive
contraction sheet is sandwiched between two rigid structural
layers (Fig. 6). When heat is applied to the structure, the middle
contraction layer shrinks. As a result, the entire structure folds in
the direction that opens as a gap in the sheet.

We developed a MATLAB program for autogeneration of multi-
blade propeller crease patterns that allows users to vary the
parameters of the design for the purpose of optimization. A
graphic interface displays the front and back designs and allows
users to adjust the gap widths along the folds (Fig. 7). A sample
autogenerated pattern for a 4-blade propeller with circular curva-
ture is shown in Fig. 7(a). User-controlled parameters include: (1)
the number of blades, (2) the type of curvature, either n=1.5, 2,

Q@

~
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Fig. 6 Three layer structure for the heat-sensitive self-folding
method [16]
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Fig. 7 Automated self-folding crease pattern generation. (a)
The user interface. (b) Front and back crease pattern of a 3-
blade propeller. (c) Crease pattern of a 5-blade propeller. In a
curved crease, a superellipse and a straight line are connected
smoothly at an inclination of 45 deg.
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4, or sinusoidal, (3) the apothem of the regular polygon, (4) the
length of the curved crease, (5) the amplitude of the curved crease,
(6) the incident angle of the curved crease, and (7) the gap width.

Finally, holes for the guiding pole, which were employed to sta-
bilize the posture of a propeller during the levitation experiments,
were added in each blade. When folding is complete, the hole
appears as the conjugation of half-folded circles.

In the fabrication process, the generated crease pattern was
printed onto a rigid sheet material using a laser cutter machine.
After the excessive components of the pattern were removed, the
contraction sheet (polyvinylchloride; PVC) was placed between
the front and the back forms of the crease pattern. These two
layers were then laminated upon one another, sandwiching the
contraction sheet. Finally, the entire structure was subjected to
uniform thermal application in a heated oven, thus self-folding
from a two-dimensional crease pattern into a three-dimensional
propeller.

5 Results

This section presents the results from experiments on self-
folding and on propeller levitation.

5.1 Single Curved Crease Self-Folding. We fabricated three
types of self-folding sheets of curved creases that we modeled in
Sec. 3 and compared the folds to the simulated values of o. The

Journal of Mechanisms and Robotics

self-folding experiments were performed on water in an oven
(Cuisinart TOB-100) by setting the temperature to about 110 °C.
The water was prewarmed to approximately the deformation tem-
perature of PVC (~50°C) before the placement of a self-folding
sheet. The sheets were folded on water to provide uniform heating
(see Ref. [24]). In addition, folding on water helps reduce friction
between the propeller and the ground. Under the set temperature
of 110°C, successful self-folding of the curved crease was
observed (Fig. 8(a)). Once folding started, the process maintained
the speed of folding for a while before it slowed down and
converged to the final angle.

The folded sheets are displayed in Fig. 8(b). In our measure-
ments, the folding angles at the middle (onigale) are 2.0 rad
(113 deg) for n=1.5 crease, 1.9 rad (107 deg) for n=2 crease,
and 1.1 rad (61 deg) for n=4 crease, showing that the most
acutely folded crease was from n=4 and the least folded from
n=1.5 (see the overlaid plots in Fig. 2). This trend was predicted
in the simulation and also supports our intuition; when n =4, the
crease has almost a straight line in the middle. Approximating the
curves as a straight crease should result in yielding a very small
folding angle «. Conversely, when 7 is smaller, n = 1.5, the crease
can be approximated as two straight lines going from the edges
intersecting in the middle. In this case, the folding angle reaches
to 71/2 given the surface can be folded fully flat.

The surface of the n= 1.5 curve induced the largest bend at the
middle of the surface, whereas the n =4 curve showed at the edge
(compare the indications of ruling in Fig. 8(b)). The influence of
the stiffness of the self-folding sheet, which hindered the bending
of the surface and was not counted in the model, can be recog-
nized in the experimental results; with n=1.5 and n=2.0, the
Omiddle Show smaller (more acute) values than expected by the
model, whereas the influence can be seen on o.,q with the n=4
curve, in which smaller o.,q was observed (0,q=1.96 rad
(112 deg) for n=1.5 crease, 1.76 rad (101 deg) for n =2 crease,
and 1.21 rad (70 deg) for n=4 crease). This result implies a
potential to improve the model by reflecting the stiffness of the
material in rulings.

5.2 Propeller Self-Folding. We show the snapshots of self-
folding with the n =2 (circular) curve propeller design in Fig. 9.

Self-folding took about 3 min, from when deformation first
began to when the sheet successfully achieved the targeted propel-
ler shape. The self-folding successfully proceeded with 180 deg
foldings along straight lines, resulting in about a 0.91 rad
(52.2 deg) angle of attack (Fig. 10(@)). In contrast, self-folded pro-
pellers of curved creases n=1.5 showed a low attack angle of
0.86 rad (49.4 deg), while creases n=4 showed a high attack
angle of 1.08 rad (61.7 deg) (Fig. 10(b)).

n=4 (1.1rad

n=1.5 (2.0rad)

n=2 (1.9rad)

Fig. 8 Self-folded curved creases with different curvature pat-
terns. (a) The snapshots of the n=2 model while self-folding.
(b) Self-folded curved creases (n=1.5, 2, 4 from left to right,
respectively).
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Fig. 9 Self-folding 4-blade propellers (n =2 model). The whole process was completed in about 3 min.

(b) n=1.5 n=2

magnets

=4
A\ s <&

Fig. 10 Self-folded 4-blade propellers. (a) The angled view. (b)
Comparison of angle of attack of n=1.5, n=2, and n=4
propellers.

3 wing propeller .

5 wing propeller

Fig. 11 Self-folded 3-blade propeller (left) and 5-blade propeller
(right)

We further attempted two types of propeller self-foldings from
the circular curve based on the crease designs in Figs. 7(b)
and 7(c). Figure 11 shows the self-folded 3-blade propeller (on
left) and 5-blade propeller (on right) for the verification that our
parameterized design generates valid self-foldable propeller pat-
terns. In the 3-blade model, compared to the 4-blade propeller, the
number of blades is fewer and the length of the creases of straight
lines is longer compared to the curved creases; thus, the design
caused wider folding angles along the curved creases. The 5-blade
model shows opposite attributes when folded. The folding angles
of curved creases show smaller values compared to the 3-blade
model. Currently, attaching paired magnets to odd number blade
propellers is difficult for balancing propose, although we propose

021013-6 / Vol. 7, MAY 2015

to utilize a diametrically magnetized hollow cylindrical magnet
for future work.

5.3 Performance of the Propeller. To demonstrate its func-
tionality as a self-folded structure, we levitated the self-folded
4-blade propeller inside water by remotely actuating it with a
magnetic field. For this purpose, two pairs of two cylindrical mag-
nets (axially magnetized, #3.27mm x H1.62mm, K&J magnet)
were horizontally attached onto the tip of two opposite blades
pointing in the same directions (see Fig. 10(b)). The two coupled
magnets keep the positions on a blade by pinching it from both
sides. To obtain a rotational magnetic field along the horizontal
direction, we powered two-paired coil sets switching alternatively,
accelerating the rotational speed of the magnetic field from 20 Hz
to around 40 Hz (see Fig. 12 in the Appendix).

Figure 12(b) shows the height of levitation over time. The aver-
age heights of levitation for 15 s were 11.77 mm for n=1.5,
14.69 mm for n=2, and 13.02 mm for n =4, which corresponds
to 1.01, 1.26, and 1.11 body lengths, respectively, showing that
the n=2 propeller shows the best levitation level. While in
motion, the propeller iteratively experienced levitation and step
out resulting from the levitation, changing the height repeatedly.
Step out occurred as the propeller moved afar from the coils by
levitation and thus received a weaker magnetic field.

A unique behavior was from the propeller of n = 1.5, where lev-
itation proceeded slowly compared to the other propellers due to
the shallower angle of attack. As a result, it showed a rather long
duration for levitation before stepping out, appearing in the
smooth trajectory in the figure. Despite the environment being
underwater, the experiment shows the functional motion as a pro-
peller, which was generated by self-folding from a sheet structure.

6 Conclusion

This study shows a method of rapid prototyping of 3D curved
structures based on a self-folding technique. We explore design
and modeling approaches for regulating folding angles by chang-
ing the curvature of creases and applied this to the fabrication of
propeller blades. Our results demonstrating self-folding propellers
supported by mathematical estimation, automated crease genera-
tion, and self-folding materials shows promise for the automation
of fabricating complex three-dimensional structures through a
folding process of layered intelligent sheet materials.
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Appendix: Remote Magnetic Actuation

A setup consisting of four electromagnetic solenoid coils was
employed to apply a rotational magnetic field to the propeller. The
magnetic coils consist of copper wire wound on square pillar-
shaped ferrous cores of cross-sectional side lengths 2D. An xyz
coordinate set is defined for each coil, such that the origin lies at
the centroid of each coil, the x-y plane is parallel to the surface of
the coil, and z is normal to the surface, as illustrated in Fig. 13. A
small magnet a distance from the coil can be regarded as a mag-
netic dipole moment m. Assuming that the magnet’s shape can be
approximated as a spherical shape of radius a, m can be described
with the saturation magnetization Mg, as

4
m=_ TEQBMSM

3 (AL)

where Mgy is intrinsically given by the material of the magnet.

pole
o propeller

stage x,y

electromaghetic coils

Fig. 13 The developed electromagnetic coil system
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The z-directed magnetic flux density B, centered on the z axis at
position z is

[ 2D?
B.=tv = (A2)
47 (D? +22)3/2
The gradient along the z axis is then
OB, 2
2 7Z§ (A3)
0z (DZ +22)~/2

When D < z, using Taylor series, the force that the magnet expe-
riences is proportional to

OB. 2z
0z 5 5

The four coils were evenly spaced around the central vertical
axis and tilted at 45 deg from the horizontal. The stage was set on
the point where the z axes of all the coils intersect. This configura-
tion allows the generation of any arbitrary magnetic field vector at
the stage via the superposition of individual fields of each coil
(see Fig. 13). In addition, a quasi-uniform field is guaranteed with
arbitrary strength along the “x-Cy plane and a nonuniform field
along the “z-direction. Because the magnetic field strength is
stronger at positions closer to the coils, the propeller can experi-
ence magnetic step out as it levitates higher and enters a relatively
weaker magnetic field region.

The force F and the torque 7 that the magnet experiences in a
magnetic flux density B are given as

(A4)

F=(m- V)B (AS)

t=mxB (A6)

where B is the globally created superimposed magnetic flux
density of four coils. The torque reaches the maximum when
the relative angle between the magnet and the applied field
reaches 90 deg.

MAY 2015, Vol. 7 / 021013-7

Downloaded From: http://mechanismsr obotics.asmedigitalcollection.asme.or g/ on 09/11/2015 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



In real measurements, the coil exerted magnetic fields of
7.0 mT, 5.7 mT, and 19.7 mT at a current flow of 4 A measured at
the center of the surface at respective distances of z=0 mm (on
the surface), z= 10 mm, and z =40 mm. The amount and duration
of the current to the coils were driven by motordrivers (SyRen10),
which were manually controlled through serial communication
with a PC via ArduinoMega.
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